

A katalizátorok összetételének hatása a biomasszából előállítható egyszerű vegyületek átalakítására

Erdőhelyi András

Szegedi Tudományegyetem Fizikai Kémiai és Anyagtudományi Tanszék

MTA Kémiai Tudományok Osztálya Felolvasóülés 2012. január 24.

Biomassza	Mennyiség et/év	Energiatartalom PJ/év
I. Tüzelési célú		
Gabonaszalma	1 200	14,0
Kukoricaszár	2 500	30,0
Energiafű	600	7,0
Szőlő venyige, gyümölcsfa nyesedék	350	5,0
Energetikai faültetvény	2 500	38,0
Tüzifa/erdőkből	4 000	60,8
II. Bio motorhajtóanyag		
Kukorica	2 000	24,0
Búza/rozs	1 800	21,6
Repce	460	7,0
Napraforgó	200	3,2
III. Biogáz		
Hígtrágya, szerveshulladék	10 000	9,0
Silókukorica, cirok	3 200	10,8
Összesen:		230,4
		Forrás

Magyarország biomassza termelése

orrás: Magyar Energia Hivatal

Biomassza felhasználható:

- energiatermelésre
- üzemanyagként
 - benzin adalékként (bioetanol)
 - biodizel előállítására
 - hidrogén előállítására
- vegyipari alapanyagként

Az előadás témái:

Hidrogén előállítása a bioetanol reformálásával

- hordozós nemesfém-katalizátorokon
- K-mal adalékolt Pt/Al₂O₃-on
- Pt/ZrO₂-Al₂O₃ katalizátoron

különböző Cu/CeO₂-on

A szintézisgáz előállítása a CO₂ + CH₄ reakcióval

- $-TiO_2$ -dal és V₂O₅-dal promotált Rh/Al₂O₃-on
- H₂S hatása a reakcióra
- H₂S hatása a CO₂ + H₂ reakcióra

Az Au-Rh/TiO₂ felületi szerkezetének változás a CO₂ +H₂ reakcióban

A hidrogénnel működő tüzelőanyag cellák által előállított elektromos áram kimondottan környezetbarátnak tekinthető. Különösen akkor ha a hidrogént megújuló energia forrás például biomassza felhasználásával állítják elő.

A hidrogén üzemanyagként való használatának előnye, hogy

hidrogén korlátlan mennyiségben található, főleg víz formájában,

elégetésekor nincs károsanyag-kibocsátás,

a folyamat mellékterméke víz,

az energiaátalakítás folyamata zajtalan,

A hidrogén üzemanyagként való alkalmazásának hátránya:

- Drága a szerkezet.
- Korlátozott teljesítménye és hatótávolsága miatt csak személyautóknál alkalmazható.
- Folyamatos üzemelést igényel.
- Álló járműnél is 1-3 százalékos a párolgási veszteség.
- A legkorszerűbb modell sem működőképes 20 C° alatt.
- Ritka töltőállomás-hálózat, gyártókapacitás és szervizháttér.
- -Az üzemanyagként használt 253 C° hidrogént 700-1000 bar nyomáson kell sűríteni,

-a cseppfolyósítás költséges,

-a tankolás veszélyes.

EGYETEN A fenti hátrányok legtöbbje kiküszöbölhető, ha a hidrogént a helyszínen állítjuk elő valamilyen reakcióval.

Az egyik legígéretesebb jelölt erre az etanol átalakítása, mert nem, vagy csak kismértékben mérgező, nem túl drága, viszonylag tiszta tüzelőanyag, megújuló forrásból állítható elő, nagy a hidrogén tartalma, könnyű nagy mennyiségben előállítani, könnyű a kezelése.

VERSITAS

Etanolból hidrogént előállíthatunk közvetlenül parciális oxidációval

 $\textbf{C}_{2}\textbf{H}_{5}\textbf{O}\textbf{H}~\textbf{+}~\textbf{1}~\textbf{.5}~\textbf{O}_{2}~\textbf{\rightarrow}~\textbf{3}~\textbf{H}_{2}~\textbf{+}~\textbf{2}~\textbf{C}\textbf{O}_{2}$

Vagy gőz reformálással

 $C_2H_5OH + 3 H_2O \rightarrow 6 H_2 + 2CO_2$

Ezeken a reakciókon kívül számtalan egyéb folyamat is végbemehet

 $C_{2}H_{5}OH \rightarrow C_{2}H_{4} + H_{2}O$ $C_{2}H_{5}OH \rightarrow CO + CH_{4} + H_{2}$ $C_{2}H_{5}OH \rightarrow CH_{3}CHO + H_{2}$ $2 C_{2}H_{5}OH \rightarrow (C_{2}H_{5})_{2}O + H_{2}O$ $CO + H_{2}O \rightarrow CO_{2} + H_{2}$ $CO_{2} + 4 H_{2} \rightarrow CH_{4} + 2 H_{2}O$

Kísérleti rész

A szelektivitás definíciója

A katalitikus reakciókban az egyes termékek szelektivitását a következő módon számoltuk:

 $S_{H_2} = \frac{x_{H_2}}{\sum x_i n_i} \qquad S_i = \frac{x_i n_i}{\sum x_i n_i}$

x_i : *i* termék moltörtje x_{H2}: a H₂ moltörtje N_i : a hidrogén atomok számának a fele, vagy a szénatomok száma a termék molekulákban Az etanol + víz reakció termékösszetétele 723 K-en Ir/Al₂O₃-on

Az AI_2O_3 hordozósnemesfémeken a konverzió 723K-en95 % felett volt, ésidőben nem változott.

Ezzel szemben a reakció termékösszetétele jelentősen változott. A H_2 , CO_2 szelektivitása csökkent az etilén képződés szelektivitása pedig nőtt.

Erdőhelyi et al. Catal. Today 116 (2006) 367.

Az etanol víz reakcióban 723 K-en keletkező hidrogén szelektivitása a különböző Al₂O₃ hordozós nemesfém katalizátorokon

A H_2 és a CO_2 képződés szelektivitása időben csökken minden esetben, de ennek mértéke függ a fémtől.

A legnagyobb mértékű változást a Pt/Al_2O_3 míg a legkisebbet a Ru/Al_2O_3 és a Rh/Al_2O_3 esetében mértünk

Erdőhelyi et al. Catal. Today 116 (2006) 367.

ETEM

90.

Az etilén képződés szelektivitása ellentétesen változott mint a H_2 szelektivitása, időben minden vizsgált esetben nőtt. A változás mértéke a fémtől függött, a legnagyobb a Pt/Al₂O₃, míg a legkisebb a Ru/Al₂O₃ és a Rh/Al₂O₃ esetében volt.

Erdőhelyi et al. Catal. Today 116 (2006) 367

Az etanol reformálása Pt/Al₂O₃ katalizátorokon 723 K-en

A fémtartalom növelésével a szelektivitás időbeni változásának a mértéke csökken

Dömök et al. Appl. Catal. B: Environmental 69, (2007) 2621

A termékképződés szelektivitása az etanol + víz reakcióban Pt/Al₂O₃-on különböző hőmérsékleteken

A reakció hőmérsékletének emelésével a szelektivitás változása időben jelentősen csökken.

Dömök et al. Appl. Catal. B: Environmental 69 (2007) 262

Néhány megállapítás

Az Al₂O₃ az etanol + víz reakciójában túlnyomórészt etilén keletkezik

Hordozós nemesfém katalizátorokon időben változik a reakció termékösszetétele; a hidrogénképződés szelektivitása csökken az etiléné nő.

Ez a hatás a a katalizátor fém tartalmának és a reakció hőmérsékletének emelésével csökken

Ebből arra a következtetésre jutottunk, hogy a reakció alatt a fém elveszti aktivitását és a hordozó katalitikus hatása kerül előtérbe.

Ezért részletesen vizsgáltuk a reakció alatt keletkező felületi formákat és tanulmányoztuk reakcióképességüket.

Az Pt/Al₂O₃-on adszorbeált etanol infravörös spektruma

Az etanol adszorpciója után nem csak adszorbeált etanol, különböző etoxi formák, adszorbeált CO és különböző karbonátok, hanem jelentős mennyiségű acetát csoport is kimutatható. Ez utóbbi még 700 K felett is stabilis volt.

Raskó et al. Appl. Catal A: General 299 (2006) 202

Azt találtuk, hogy

- nincs lényeges különbség a hordozón és a hordozós fémkatalizátorokon szobahőmérsékleten adszorbeált etanol IR

spektrumában, -a hordozós fémkatalizátorokon jelentős az adszorbeált CO mennyisége, -a felületen nem csak adszorbeált etanol, etoxi, CO és különböző karbonát csoportokat mutattunk ki, hanem jelentős volt az acetát képződés is.

- a felületi acetát csoportok a fémtől függően 700 - 770 K-ig kimutathatók a felületen,

- irodalmi adatok alapján feltételezzük, hogy az acetát inkább a hordozóhoz kötődik.

Erdőhelyi et al. Catal. Today 116 (2006) 367

Az adszorbeált etanol TPD-ja Pt/Al₂O₃-ról és Al₂O₃-ról

500 T/K 600

700

800

300

400

Az adszorbeált etanol mennyisége a mindkét esetben közel azonos volt, de egy nagyságrenddel több, mint a felületi Pt atomok száma. A termékösszetétel azonban alapvetően különböző volt. Az Al₂O₃-ról C₂H₄ míg a Pt/Al₂O₃-ról CO₂, CH₄ és H₂ deszorbeálódott.

Raskó et al. Appl. Catal. A: General 299 (2006) 202

Az etanol + víz reakció alatt 723 K-en Pt/Al₂O₃-on felvett DRIFT spektrumok

Az acetátra jellemző sávok intenzitása időben jelentősen nőtt, míg a CO-hoz rendelhetőké csökkent a reakció során

Dömök et al. Catal. Lett. 126 (2008) 49

Hogy tudjuk értelmezni, hogy a hordozós fémkatalizátorokon minden esetben kimutatható egy magas hőmérsékletű deszorpciós forma

- IR spektroszkópiával kimutattuk, hogy a szobahőmérsékleten adszorbeálódott etanolból 373 K felett felületi acetát csoportok képződnek, melyek még 600 K felett is stabilak
- Az hordozókon adszorbeált ecetsav TPD-ja során termék képződés csak 600 K felett volt volt kimutatható.
- Ezek alapján mondhatjuk, hogy az etanol adszorpciója után magas hőmérsékleten a deszorbeálódó termékek az adszorbeált acetát csoportok bomlásából származnak .

Néhány megállapítás

➢IR mérésekkel kimutatták, hogy a reakció hőmérsékletén csak adszorbeált CO és acetát csoportok vannak a felületen.

> TPD vizsgálatok igazolták, hogy a magas hőmérsékletű deszorpció függ a fémtől.

> A hidrogénképződés szelektivitási és az acetát csoportok stabilitási sorrendje a különböző Al_2O_3 hordozós fémek estében ellentétesen változik.

Részben irodalmi adatok alapján megállapítottuk, hogy az acetát csoportok inkább a hordozóhoz kötődik.

A fenti megállapítás ellenére úgy tűnik a katalizátorok szelektivitásának változásáért a felületi acetát csoportok a felelősek.

<u>Kérdés:</u>

Hogyan tud egy felületi forma mérgezni egy folyamatot, ha az a hordozóhoz kötődik, a reakció pedig a fémen játszódik le?

Feltételeztük, hogy az acetát csoport gátolja az OH felületi migrációját a hordozóról a fémhez és ez eredményezi a reakció termékösszetételének a változását.

Az etanol + víz reakció alatt 723 K-en Pt/Al₂O₃-on felvett DRIFT spektrumok

C₂D₅OD-t injektálva a reagáló gázelegybe az OH sávok intenzitása csökken, az OD-é nő, de 4 perc az eredeti spektrumot kapjuk vissza.

igazolja az OH csoportok részvételét a reakcióban

A kálium hatása a Pt katalizátorokra az etanol reformálásában

A korábbiakban azt találták, hogy a kálium promotálja az ecetsav bomlását fém katalizátorok esetében (G. Hoogers et al. Surf. Sci.340 (1995) 23).

Ezért előállítottunk különböző K tartalmú 1% Pt/Al₂O₃ katalizátorokat, melyeken vizsgáltuk az etanol reformálását, valamint az etanol és a katalizátor közötti kölcsönhatást.

A termékképződés szelektivitása az etanol + víz reakcióban 723 K-en különböző K tartalmú Pt/Al₂O₃ katalizátoron

Dömök et al. Catal. Letters 126 (2008) 49.

Az etanol hőmérséklet programozott deszorpciója 0.4% K+1% Pt/Al₂O₃-ról és a CO₂ képződése különböző K-mal adalékolt Pt/Al₂O₃ esetében

Az adszorbeált etanol hőmérséklet programozott deszorpciója; DRIFT spektrumok

Dömök et al. Catal. Letters 126 (2008) 49

Az IR spektroszkópia szerint a felületi formák és koncentrációjuk közel azonosak a reakció alatt a Pt/Al₂O₃ és a K+Pt/Al₂O₃ katalizátorokon, de a reakció termékösszetétele jelentősen eltér egymástól.

Ezt az eredményt magyarázhatjuk egy korábbi megfigyeléssel, mely szerint alkálifémmel promotált Al_2O_3 -on jelentősen nő a CO + H_2O reakció sebessége¹

Ez az eredmény egyértelműen mutatja, hogy nem csak a fém hanem a hordozó is a katalizátor aktív komponense az etanol víz reakcióban.

¹Amenomiya Y. Pleizier G., J. Catal. 76 (1982) 3

Hasonló kétfunkciós mechanizmust állapítottak meg az ecetsav reformálásának a vizsgálata során Pt/ZrO₂ katalizátoron, a Pt és a ZrO₂ is részt vesz a reakcióban. A Pt felületén az ecetsav elbomlik, a víz a ZrO₂-on aktiválódik, OH csoportok keletkeznek, melyek reagálnak az ecetsav bomlástermékeivel. Ez a katalizátor a jelentős mértékű szénlerakódás miatt gyorsan deaktiválódik.

Elkerülendő a deaktiválódást $Al_2O_3 - ZrO_2$ keverék oxidora vittük fel a Pt-t és ezt használtuk katalizátornak.

K. Takanabe, et al. J. Catal. 227 (2004) 101 J. Catal. 243 (2006) 263

Dömök et al. Appl. Catal. A: General 383 (2010) 33

VERSITAS SCIENTIARUM SZEGEDIENSIS Az etanol + víz reakció néhány jellemző adata 1% Pt/Al₂O₃-ZrO₂ katalizátoron 723 K-en

		BET surface m²/g	Dispersity	Selectivity for H ₂ formation %	Turnover number for H ₂ formation
			%		x10 ³ sec ⁻¹
	Pt/Al ₂ O ₃	130.1	49	5.7	10.6
	Pt/Al ₂ O3-ZrO ₂ (3:1)	73.2	35	16.0	14.1
	Pt/Al ₂ O ₃ -ZrO ₂ (1:1)	51	26	23.8	28.8
	Pt/Al ₂ O ₃ -ZrO ₂ (1:3)	27.2	19	42.0	60.2
	Pt/ZrO ₂	5.5	12	42.3	56.1

Dömök et al. Appl. Catal. A: General 383 (2010) 33

Osszehasonlítva a Zr 3d elektronok kötésenergiáit a ZrO2-ban és a Pt/ZrO₂—ban 0.4 eV eltolódást

Ha a minták alumínium tartalma nő az elektronok kötésenergiái kisebb értékek felé tolódnak el.

Ez egyértelműen mutatja, hogy a ZrO2 az előkezelés során kismértékben de redukálódik
Az elmondottak egyértelműen bizonyítják, hogy a katalizátorok felületén az acetát csoportok 723 K-en még stabilak és mérgezik a hidrogén képződését. Amennyiben csökkentjük a stabilitásukat, nő a hidrogénképződés szelektivitása.

Nem volt különbség az acetát csoportok IR spektrumában ha a hordozó tartalmazott Al_2O_3 -t, csak a sávok intenzitása csökkent a ZrO_2 tartalom növelésével.

Eltérő spektrumot kaptunk ha csak ZrO₂ volt a hordozó.

Ezt úgy értelmezhetjük, hogy a keverékoxid hordozós minták esetében az acetát csoportok főleg az Al_2O_3 -hoz kötődnek és nem a ZrO_2 -hoz.

Igy a víz aktiválódhat a parciálisan redukált ZrO₂-on, OH csoportokat képezve, melyek reagálhatnak a Pt- alumínium-oxid határfelületen képződő bomlástermékekkel

Ez egyben magyarázatot ad arra, hogy miért a Pt/Al_2O_3 -Zr O_2 (1:3) -on a legnagyobb a hidrogénképződés sebessége.

Cu/CeO₂-on lejátszódó etanol + H₂O reakció közben 823 K-en felvett infravörös spektrumok

UNIVERSITAS SCIENTIARUM SZEGEDIENSIS

A Ce 3d XP spektruma a különböző Cu/CeO₂-ban az etanol reformálása során

CeO₂-on ahol felületi acetát képződik, aceton keletkezhet két acetát csoport kapcsolódásán keresztül

 $2 CH_3COO-Ce^{+4} \Rightarrow CH_3COCH_3 + CO_2 + Ce^{+4}-O^{2-} + Ce^{+3}-V_0$ V_o oxigén vakanciát jelent

Aceton keletkezhet az acetil csoportok diszproporcionálódásán keresztül is

$$2 CH_{3}CHO \Rightarrow 2H_{(a)} + 2 CH_{3}CO_{(a)}$$
$$2 CH_{3}CO_{(a)} \Rightarrow CH_{3}COCH_{3} + CO$$

Az első folyamat az impregnált, míg a második lehetőség inkább a koprecipitált minták esetében lehet a meghatározó

A biogáz, azaz a CO₂ + CH₄ gázelegy katalitikus átalakítása

A komoly erőfeszítések történtek a CH_4 és a CO_2 , a két legolcsóbb széntartalmú vegyület katalitikus átalakítására, más értékesebb anyagokká. A legkézenfekvőbb megoldás, ha ezt a két komponenst egymással reagáltatjuk miközben szintézis gáz keletkezik

$CO_2 + CH_4 = 2 CO + 2 H_2$

Kimutattuk, hogy a hordozós nemesfémek hatásos katalizátorai a reakciónak¹. Megállapítottuk, hogy a hidrogén, mely a metán disszociációja során keletkezik, elősegíti a széndioxid disszociációját².

Napjainkban ismét jelentősen megnőtt az érdeklődés e reakció iránt, mivel a biogáz két fő komponense a CO_2 és a CH_4

¹ Solymosi et al Catal. Letters 11 (1991) 149; ² Erdőhelyi et al. J. Catal. 141 (1993) 287

I. Sarusi et al. Catal. Today 171 (2011) 132

	Konverzió		Képződési sebesség				CO/H ₂
	CO ₂	CH ₄	H ₂	СО	H ₂	СО	
	%	%	µmol/g		x10 ⁻³ sec ⁻¹		
1% Rh/Al ₂ O ₃	13.5	7.7	5.9	13.9	93.4	220	2.35
1% Rh/ 5% V ₂ O ₅ -A ₂ O ₃	18.4	10.3	7.2	18.0	130	324	2.5
$Rh/5\% TiO_2 - Al_2O_3$	19.4	11.2	8.0	18.6	105	245	2.32

A térsebesség 20000 h⁻¹

- A CO_2 konverzió minden esetben nagyobb, mint CH_4 konverzió
- A CO/H₂ arány nagyobb, mint 2.

SZEGEDI TUDOMÁNYEGYETEM

csökken:

- A TiO₂-dal és a V_2O_5 -dal adalékolt minták aktivitása nagyobb, mint a Rh/Al₂O₃-é
- A felületi fématomra vonatkoztatott reakció sebesség a következő sorrendben

 $Rh/V_2O_5-Al_2O_3$ > $Rh/TiO_2-Al_2O_3$ > Rh/Al_2O_3

Wavenumber (cm⁻¹)

Különböző Rh tartalmú minták hőmérséklet programozott redukciója

A minták ugyanabban a hőmérséklettartományban redukálódnak

Az elreagált hidrogén mennyisége egyértelműen mutatja, hogy a promotált mintáknál nem csak a Rh hanem az oxid is redukálódott.

A hidrogén fogyásból számolva a Ti átlagos oxidációs foka a redukált mintában + 3.9 míg a V-é mindkét esetben +5 helyett +4.

I. Sarusi et al. Catal. Today 171 (2011) 132

Az XPS mérésekkel kimutattuk

 - a Rh fémmé redukálódott az előkezelés alatt és oxidációs állapota a reakció alatt nem változott

- a TiO₂ kismértékben redukálódott a Ti 2p elektronok kötésenergiája néhány tized eV-tal kisebb energiák felé tolódott el,

- Jelentő eltolódást észleltünk a V 2p elektronok kötésenergiáiban a V $_2O_5$ -dal promotált minták esetében. A redukció után a V oxidációs száma +4 körül volt,

- Ezek az eredmények teljes összhangban vannak a TPR mérésekkel.

A korábbiakban feltételeztük¹, hogy

- a hidrogén és feltehetőleg a $\rm CH_x$ fragmentek promotálják a $\rm CO_2$ disszociációját, és
- az adszorbeált oxigén elősegíti a CH4 disszociációját

 $CH_{4} = CH_{3(a)} + H_{(a)}$ $CH_{3(a)} = CH_{2(a)} + H_{(a)}$ $CH_{2(a)} = CH_{(a)} + H_{(a)}$ $CH_{(a)} = C_{(a)} + H_{(a)}$

 $CO_2 + H_{(a)} = CO + OH_{(a)}$ $CH_{(x)} + CO_2 = 2 CO + x H_{(a)}$

2 $H_{(a)} = H_{2(g)}$ 2 $OH_{(a)} = H_2O + O_{(a)}$

A Ti O_2 -dal és a V_2O_5 -dal adalékolt minták esetében egy elektromos kölcsönhatás is lejátszódhat az oxidok és afém között.

Egy másik lehetséges út a CO_2 redukciójára, mely magyarázhatja a V_2O_5 és a Ti O_2 promotáló hatását az, hogy az előkezelés során az oxidok részlegesen redukálódnak oxigén vakanciák keletkeznek, melyek képesek redukálni a CO_2 miközben oxidálódnak. A hidrogén és a CH_x fragmentek pedig ismételten redukálják az oxid promotorokat².

¹ Erdohelyi et.al J.Catal. 141 (1993) 287 and Appl. Catal. A General 108 (1994) 205

A CO₂ és a CH₄ konverziója Rh/TiO₂ és Rh/SiO₂ katalizátorokon 773 K-en 22 ppm H₂S jelenlétében

A zöld görbe a H₂S mentes reakció eredménye

A CO/H₂ arány változása a CO₂ + CH₄ reakciójában Rh/TiO₂ és Rh/SiO₂ katalizátorokon 773 K-en 22 ppm H₂S jelenlétében

A zöld görbe a H₂S mentes reakció eredménye

1 % Rh/TiO₂

MÁNYEGYETEM

1 % Rh/SiO₂

A CO/H₂ arány változása a CO₂ + CH₄ reakciójában TiO₂ és SiO₂ hordozós katalizátorokon 773 K-en 22 ppm H2S jelenlétében

ÁNYEGYETEM

Hogy lehet ezeket az eredményeket magyarázni?

Az a megfigyelés, hogy a CO_2 konverziója 773K-en nagyobb mint a CH_4 -é és hogy a CO/H_2 arány minden esetben nagyobb mint 1, azt mutatja, hogy a

$CO_2 + CH_4 = 2 CO + 2 H_2$

reakciót másodlagos reakciók követik.

Ezt a folyamatot leírhatjuk, mint a metán reformálásának és a fordított víz-gáz reakciónak az összege.

 $CO_2 + H_2 = CO + H_2O$ $CH_4 + H_2O = CO + 3H_2$

 H_2S jelenlétében TiO₂ hordozós katalizátorokon a CO/ H_2 arány nő miközben a reakció sebessége csökken. Ez azt mutatja, hogy a H_2S nem azonos mértékben mérgezi a másodlagos folyamatokat.

T. Szailer et al. Top. Catal, 46 (2007) 79

A 373 K-en adszorbeált H₂S hőmérséklet programozott deszorpciója

NYEGYETEM

Erdőhelyi et al. Appl. Catal. B: Environmental 53 (2004) 153.

SCIENTIARUM SZEGEDIENSIS SZEGEDI TUDOMÁNYEGYETEM VERSITAS

A CH₄ képződés sebessége a CO₂+H₂ reakcióban 1% Rh/SiO₂-on 548 K-en; 22 ppm H₂S hatása

A CH_4 képződés sebessége a CO_2+H_2 reakcióban 513 K-en különböző hőmérsékleten redukált 1 % Rh/TiO2-on

Amennyiben a redukált katalizátort a reakció előtt vagy CO2-dal vízzel kezeltük ezt a hatást nem észleltük

Novak et al. Top. Catal. 20 (2002) 107

A CO₂ + H₂ reakció vizsgálata során a legfontosabb megfigyelések

• A CO₂ kezdeti konverziója, illetve a CH₄ képződés kezdeti sebessége csökkent a redukció hőmérsékletének csökkenésével TiO₂ hordozós nemesfém katalizátorokon

• A metánképződés sebessége nagyobb kis mennyiségű H_2S jelenlétében Ti O_2 hordozós katalizátorokon, mint távollétében

SiO₂ hordozós katalizátorok esetében ezeket a változásokat nem észleltük, H₂S jelenlétében a reakció sebessége csökkent.

Ezek az eredmények azt mutatják, hogy a TiO₂ hordozós mintákon a reakció más úton is mehet mint a SiO₂ hordozós katalizátorokon.

M: Rh, Ru, Pd, Pt

outer diameter: 7 –10 nm inner chanel: 5nm

diameter: 45-110 nm

Kukovecz et al. Surf. Sci. 605 (2011) 1048

1 % Au

SEM images of titanate nanowires 0. 5 % Au + 0.5% Rh 1 % Rh

5.5 nm

Oszkó et al. Vacuum 85 (2011) 1114

12.5 – 13 nm

 $Au + Rh/TiO_2$ nanodrót

Kukovecz et al. Surf. Sci. 605 (2011) 1048

Adszorbeált CO infravörös spektuma

CO

0.25% Au-0.75% Rh/TiO2NT

Kiss et al. Catal Today 181 (2012) 163

CO adsorption

H₂ adsorption

A CO₂ + H₂ reakció néhány jellemző adata 493 K-en TiO₂ra, titanát nanocsőre és titanát nanodrótra felvitt Au, Rh és Au-Rh katalizátorokon

Katalizátor	Adszorbeált H ₂ µmol/g	Konverzió %		CH ₄ képződési sebessége µmol/gs		Fajlagos sebesség *10 ⁻³ s ⁻¹
Rh/TiO ₂	7,9	6,9	6,7	4,9	4,4	278
Rh/NW	7,5	8,9	4,5	6,6	3,2	213
Rh/NT	4,1	1,4	1	0,8	0,5	61
Au-Rh/TiO ₂	2,4	3,3	2,5	2,2	1,5	312
Au-Rh/NW	5,0	1,5	1,3	1,1	0,9	90
Au-Rh/NT	2,5	0,4	0,4	0,2	0,1	20
Au/TiO ₂	0	0,0006	0,0002	0,0003	0,0001	
Au/NW	0	0,005	0,09	0,0035	0,0006	
Au/NT	0	0,36	0,098	0,0008	0,0002	

TEM A CO₂ + H₂ reakció közben 493 K-en felvett DRIFT spektrumok

120 min

90 min

60 min

30 min

20 min

10 min

5 min

3 min

1 min

1200

oxidációjának vizsgálata során Pd-Au katalizátoron

Köszönet nyilvánítás

A TÁMOP-4.2.1/B-09/1/KONV-2010-0005 azonosító számú, "Kutatóegyetemi Kiválósági Központ létrehozása a Szegedi Tudományegyetemen" című projekt az Európai Unió támogatásával, az Európai Regionális Fejlesztési Alap valamint az OTKA K 756489 pályázat társfinanszírozásával valósul meg.

XPS, LEIS vizsgálatok

DRIFT mérések

Dr. Oszkó Albert Dr. Kiss János Pótári Gábor Dr. Raskó János Ábrahámné Baán Kornélia László Balázs Dr. Dömök Márta Dr. Fodor Krisztina Markó Kata <u>Tóth Marianna</u> Dr. Szailer Tamás

Energy input/output for a conventional large scale ethanol production plant

Energy input [MJ L⁻¹ EtOH]

Energy consumption for farming	11.33
Corn transport and storage	0.14
Water distribution auxiliaries	0.60
Thermal consumption for ethanol production	6.85
Fermentation	1.49
Distillation-dehydration	3.14
Other consumptions	2.20
Electric consumption for ethanol production	0.76
Fermentation	0.62
Distillation-dehydration	0.04
Other consumptions	0.10
Ethanol transportation	0.08
Total energy input	19.16
Energy output [MT 1-1 EtOU]	

Energy output [MJ L⁻¹ EtOH]

Ethanol energy content Secondary energy output Total energy output Netto energy value, 21.20 4.16 25.36 **6.20**

Manzolini G., Tosti S., Int. J. Hydrogen Energy 33 (2008) 5571